|cj,k | p) 1/p: f = X
نویسنده
چکیده
The affine synthesis operator Sc = P j>0 P k∈Z d c j,k ψ j,k is shown to map the coefficient space ℓ p (Z+ × Z d) surjectively onto L p (R d), for p ∈ (0, 1]. Here ψ j,k (x) = | det aj| 1/p ψ(ajx − k) for dilation matrices aj that expand , and the synthesizer ψ ∈ L p (R d) need satisfy only mild restrictions, for example ψ ∈ L 1 (R d) with nonzero integral or else with periodization that is real-valued, nontrivial and bounded below.
منابع مشابه
Affine Synthesis onto Lp when 0 < p ≤ 1
The affine synthesis operator Sc = ∑j>0 ∑k∈Zd cj,kψj,k is shown to map the coefficient space (Z+ × Zd ) surjectively onto Lp(Rd ), for p ∈ (0, 1]. Here ψj,k(x) = | det aj |ψ(aj x − k) for dilation matrices aj that expand, and the synthesizer ψ ∈ Lp(Rd ) need satisfy only mild restrictions, for example, ψ ∈ L1(Rd ) with nonzero integral or else with periodization that is real-valued, nontrivial ...
متن کاملSobolev Spaces and Approximation by Affine Spanning Systems
The dilations {aj} are lacunary, for example aj = 2 , and the coefficients cj,k are explicit local averages of f , or even pointwise sampled values, when f has some smoothness. For convergence just in W m−1,p(Rd) the scale averaging is unnecessary and one has the simpler formula f(x) = limj→∞ P k∈Zd cj,kψ(ajx − k). The Strang–Fix rates of approximation are recovered. As a corollary of the scale...
متن کاملDynamics of Rational Maps: Lyapunov Exponents, Bifurcations, and Capacity
Let L(f) = ∫ log ‖Df‖ dμf denote the Lyapunov exponent of a rational map, f : P → P. In this paper, we show that for any holomorphic family of rational maps {fλ : λ ∈ X} of degree d > 1, T (f) = ddL(fλ) defines a natural, positive (1,1)-current on X supported exactly on the bifurcation locus of the family. The proof is based on the following potential-theoretic formula for the Lyapunov exponent...
متن کاملar X iv : h ep - e x / 06 07 02 5 v 1 1 7 Ju l 2 00 6 Measurements of χ cJ → K + K − K + K − decays
M. Ablikim, J. Z. Bai, Y. Ban, J. G. Bian, X. Cai, H. F. Chen, H. S. Chen, H. X. Chen, J. C. Chen, Jin Chen, Y. B. Chen, S. P. Chi, Y. P. Chu, X. Z. Cui, Y. S. Dai, L. Y. Diao, Z. Y. Deng, Q. F. Dong, S. X. Du, J. Fang, S. S. Fang, C. D. Fu, C. S. Gao, Y. N. Gao, S. D. Gu, Y. T. Gu, Y. N. Guo, Y. Q. Guo, Z. J. Guo, F. A. Harris, K. L. He, M. He, Y. K. Heng, H. M. Hu, T. Hu, G. S. Huang, X. T. H...
متن کاملRegressions and Monotone Chains II: The Poset of Integer Intervals
A regressive function (also called a regression or contractwe mapping) on a partial order P is a function (T mapping P to itself such that o(x) < x. A monotone k-chain for CJ is a k-chain on which u is order-preserving; i.e., a chain x1 < ... <XL such that a(.~, ) d ... < a(xk). Let P,be the poset of integer intervals {i, i + 1, , m} contained in { 1,2, . . . . n}, ordered by inclusion. Let f(k...
متن کامل